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INTRODUCTION AND SUMMARY

Asymptotic approximations of optimal control laws are determined for a
class of multivariate dynamic systems whose state components are cither
slowly varying (i.e., parameters) or can be tracked arbitrarily well by making
the controller's state mecasurements sufficiently accurate. This control
optimization problem would have the standard linear-quadratic-Gaussian form
except for small terms in the measurements, that are bilinear in the control
and parameter variables, and with respect to which the control law
approximations are asymptotic. Also, the measurement noise is small in a
certain relative sense, which gives this control problem special properties.
The bilinear measurement terms give rise to a rapidly fluctuating term in the
optimal control law—a linear function of the state of a multivariate linear
system driven by a Kalman-filter innovation variable.

This rapidly fluctuating control component is essentially zero-mean,
even conditioned on all but very recent data, and so has little current effect on
the system dynamics. It is apparently an example of the probing phenomenon
in optimal control laws identified by Feldbaum (Reference 1), which is current
control effort expended to reduce uncertainty in the state variable (including
the parameters here) in order to improve system performance in the future.
A voluminous amount of literature exists on this general subject. In work
related to the particular topic here, specialized methods have been u.ed to
obtain sharper results for a particular case related to homing missile guidance
(Reference 2). Speyer and Hahn have derived similar asymptotic
approximations of optimal control laws for systems with bilinear terms in the
dynamics (Reference 3), but the "parameters” there are not static or slowly
varying and the measurement noise is not small.

The results here are obtained from an approximate dynamic
programming analysis in which the state variable includes the departures of
certain Kalman-filter covariance quantities from their local averages, and thc
analysis uses the fact that these departures are small because of the small
mecasurement noise. It is then shown how these results apply to other cascs
that arise from analyses of noise-induced departures from nominal behavior
in a more general class of optimal control problems. Typically, these other
cases have (relatively small) quadratic terms in the system dynamics and state
measurements, and cubic terms in the performance criterion.  The analysis
here is not at a mathematically rigorous level, although the constructions
developed might be wuscful in a more ambitious treatment of that sort.
Expressions denoting ordinary differential equations with white noise terms
should be wunderstood as the formally corresponding stochastic diffcrential
cquations in the Ito sense (Reference 4 and S) if a rigorous interpretation is
desired.
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Unless otherwise stated, lower case letters dcnote (real finite-
dimensional) column vectors and scalars. Matrices are denoted by capital

Roman lctters. ATdenotes the transpose of a matrix A, and tr(A) its trace if A is
square. It will also be convenient to make use of three-way matrices, which
are always denoted by capital Greek letters here. For continuity of notation,
the following definitions are adopted for such a three-way matrix T', with
vector x and matrices A and B of compatible dimensions and with repeated
indices denoting summation:

(rx)ij = rijoxo (matrix)

(AXT)ijk = Ajxg (threce-way matrix)

(AD)jik = Ajgl gk (three-way matrix)

(MBjjk = MijoBok (three-way matrix)

(r')ijk =Tjy; and (FT)ijk = Ty (three-way matrix)

(tr(D)}; = Tgio (column vector, when applicable).

With these definitions, the expression FAIBDxxT is fully associative. Many
other consequences arc obvious. Some useful but less obvious properties are

(I x) = ()} x

A () = tr[(AT) ]

tr(AT) = tr(TA)
(TB) = BT and (A) =T AT
(ArB)T = BTGTAT

(' x)AT = (AT)x and (T x)B = ('B) x.

PROBLEM STATEMENT

The more limited case actually analyzed here is that of a multivariate
system with dynamics of the form

‘)'(=Fx+Gu+w (1)
l

0= h wy, (2)
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a controller of which receives a vector measurement of the form

z=Hx + hHt(T ou’) + v (3)

and sclects the control vector u at each time instant t > 0 (with the convention
that Equation 3 is evaluated slightly before it is used to change u). The initial
statec partitions x(0) and 6(0) are statistically indepcndent a priori with Normal

(fo, Ps) and Normal (0, L,) distributions respectively. Zero-mean Gaussian
whitc noise processes w;, w,, and v are independent with covariance

parameters Q, D and R/m?, respectively.  Positive scalars m and h and are
considered parameters of the problem, with 1« m «1/h and wusually further
restrictions.  The objective is to find a control law that minimizes a scalar
performance criterion of the form

Y
J= .;_ E{X:Sfxf‘*’j (xTAx +u'Bu + 2xTZu)dl , (4)
0

where & denotes prior expectation and t; is some specified terminal time. As
usual, a control law is defined as a decision rule that, for each t in [0, tg),
specifies the current control u(t) as a function of the current measurement
history {(z(s), s) : 0 < s <t}. A, B, and S¢ are symmetric with A, S, Pg, Ly, Q, and D
positive-semidefinite and B and R positive-definite. In the context of

sufficiently small h, the components of all the matrices as well as R'! and B!
are of order unity. These matrices may be time-varying but only with time-
derivatives that are also of order unity in this sensc.

Also, some further structural properties are assumed for the Ilimiting
form of this problem when h = 0 (in which case 6 is irrelevant). First, it is
assumed that (F, G) is stabilizable and (F, H) is observable at each time instant.
To specify the other properties and also for future reference, it is convenient
to define V(t) (a normalized covariance matrix of x for this limiting case) and a
corresponding transition matrix T by

V =FV + VF' + m (Q - VH'R'HV); V(0) = mP, (5)
and
”a‘s'“ = [F - mVHTR™'HI () T(s.0); T(LD = L. (6)
s
Other assumptions are made: with m considered as a problem-formulation

paramcter, there cxists a positive T(m) (a "settling time") such that
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lim t=0and lim mt>1,
m—yo0 m-oo

and for all sufficiently large m and t » 1,

(1) V is of order mz

(2) T(st) is of order mre 5D/

fors > 1t.
(3) T(s,t) VHT is of order e =D/

(4) If U and X are symmetric matrix time functions of order unity with

X positive-semidefinite and U and X also of order unity, and if K and
q arc the matrix time function and vector random process defined by

—K = K(F-mVH'R'H) + FT-mH"RTHV)K + U; K(tp) = 0

and
q = (F-mVH"R 'H)q + mws; q(0) = 0,
where
wj is zero-mean Gaussian white noise with covariance
parameter X, then
(a) TT(s,)KVHT is of order mt® fors > t
and .

(b) HVKq is of order m21°/?
(except perhaps for a negligibly improbable set of realizations of q).

Because T(s,t) decays rapidly with increasing (s - t) > 0, the variations of V(s),
H(s), and K(s) are negligible until T is essentially zero; thus, (3) and (4a) will
also hold when V, H, and K are evaluated at s instead of t. Also, since V/m is the
error covariance matrix for the Kalman-filter estimate of x, these assumptions
imply that the entire vector x can be tracked arbitrarily closely if the
measurement noise can be made small enough (by (1), (2), and 150 as m— ).

Finding an optimal control law exactly is very difficult for this case, and
wc seck only an approximation that is asymptotically accurate to order
h?m21%/? for small h and K?mO%t*1/2 « 1 (except perhaps for a sct of
mcasurcment histories of negligible procability). However, since 1 can be as

large as m /" when x is n-dimensional (see next section), control terms of this
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magnitude can be large compared to h? under these conditions if n > 2, which
is necessary for their significance in the type of applications described in the
last section. The treatment of the problem here is further limited to finding
the control law corresponding to a cost-to-go function that has the formal
appearance of satisfying the Bellman equation for Equations 1 through 4 1o

order h®’m2t°/2.  This control law would be the desired approximation if the
ecquations involved in the analysis are well-posed—and the formally negligible
terms are indeed so in some appropriate sense—but a rigorous verification of
these conditions is beyond the scope of this report. In this sense, the result
obtained below is only a plausible candidate for the control-law approximation
being sought.

HEURISTIC MOTIVATION FOR RESTRICTIONS

Although not readily apparent, the extra restrictions (1) through (4) in
the problem formulation are actually motivated by the prototypical case of an

n-dimensional system with x;=x;,;,i=1,..,n- 1, x, = order-unity noise w, and
scalar measurement of x; only. One way of estimating the -urrent value of
this state vector for m » 1 (i.e., small measurement noise) is to partition a short

preceding time interval, say of length 1, into n equal subintervals, estimate
the value of x; at the midpoint of each subinterval as the average value of z

observed during it, and then estimate x;,(= xP),i=1,..,n-1 by taking an ith-
order difference of these x;-estimates and dividing by the appropriate

multiple of t'. By standard results, the error variance in the x; estimates in the
abscnce of the process noise w is m27!
m-211-21_

and that of the x;-estimate is of order

The error variance in the estimate of x; would therefore decrease
with increasing 1t until the variance of the change in x; produced by the
process noise over that interval (which increases with 1) is of the same order
of magnitude. For each i, this happens when t is of order m '/®, because X; is
the (n - i + 1)st integral of w, whose variance over an interval of length t can
be obtained by standard methods and is of order t2(""D*1

m " 50 as m-ow, so an optimal t for this kind of estimation would indecd be

short and have this order of magnitude for sufficiently large m (i.e., small
enough measurement noise). The corresponding error variance in the

estimate of x; would then be of order "*1-2i/y  Since the (n x n) covariance
matrix P for these crrors must be positive-semidefinite, component P;;would

be of order t"*!"/m.

For any given n,

The basic premise here is that the Kalman filter for such a system should
behave in the same way to an order-of-magnitude approximation (this has
been verificd for some special cases). In the notation of the preceding scction
for such a system, the properties assumed there can then be established by
concluding in turn that:
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_is of order 1!"/m; bccause V = mP

(1) Vi

(2) (VHT), is of order 17/m; because H = {1, 0, ..., 0] in this case

of order t/" for positive t - s of order t
(3) Ti’j(l,S) is

negligible for 1 -s»1

in order for the transition-matrix solution (e.g., Reference 6) of the Kalman
filter's differential equation for the conditional mean to operate (as a
convolution) on the mecasurement history in the manner described above.

(4) K 2¢1414); from the transition-matrix solution of K,

(3), and the fact that m is of order t™ in this case.

is of order m

(5) wvar(q,) is of order m213'2i; from (3) in the transition-matrix solution
of the usual differential equation for the covariance matrix of q,
and the fact that T « 1 and m is of order ©™".
(6) q; is of order mt>/24, by (5), the Chebychev inequality, and the fact
that q is zero-mean. ‘

(7) V is of order mt; from (1) and the fact that T « 1 and m is of order .

(8) T(ts) is of order mresD/"

m is of order t™".

fort > s; by (3) and the fact that T « 1 and

(9) T(t,s)VHT is of order e® Y%, from (2), (3), and the fact that 7 « 1 and
m is of order t™".

(10) TT(t,s)KVHT is of order mt2; from (2) through (4) and the fact that T « ]
and m is of order 1°".

(11) HVKq is of order m2t>/2; from (2), (4), (6), and the fact that m is of
order ™"

In this case, t would be a meaningful “settling time" for this Kalman filter. .
Although x can be iracked arbitrarily well with sufficiently accurate
mecasurements (of x, alone in this instance), an interesting point in this

conncction is that if x, were also unit-intensity process noise for some k < n,

then the Kalman filter's cffective "data window" for estimating xy,{, .... X,. and
the variance of the cstimation errors for these state components, would
remain of order unity as m-—eo. The limiting factor in estimating thesc

componcnts would then be the ratio of the process noise intensities to cach

8




NWC TP 7081

other, and the entire state vector could no longer be tracked arbitrarily well
just by reducing the measurement noise even though the system would still be
observable.

Finally, it is reasonable to hope that the properties assumea in the
problem formulation would also be characteristic of a considerably wider class
of linecar observation systems whose state can be traclked arbitrarily well with
small cnough measurement noise. The rcasoning is that the tracking
accuracy in such cases would often be limited by some similarly configured
subset of the state components, one of which is driven by process noise and is
a higher derivative of another that is measured directly.

STATE ESTIMATION

If the conditional mean and covariance matrix for the current composite
state (x,8), given the currently available measurements, are partitioned in the
obvious way as

i = [z
) E' L
then it follows from standard Kalman filtering results (Reference 7) that
X =Fx + Gu + m2[P + h(CTET) u]HTR 1z - 2); (0) = X, (7)
6= m?ET + h@TL) ulHTR 'z - 2); 8(0) = §, (8)

P =FP+PF' + Q- m2[P + h("TET) u]JHTR'H[P + h(El)u}:P(0) = Py (9)

E = FE - m%(P + h@TE") u)HTR TH[E + h(LT)u]; E©) = 0 (10)

L = h?D - m?(ET + hr"L)u]HTR TH(E + h(LT) v} LO) = Ly, (11)
where

Z=H[x + h t(r 6u")]. (12)

It will be convenient to definc the quantities

M= L:—[E + h(Lr)'u] (13)

and
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N = (mP - V)/h2 + muTI‘"LFTu, (14)

where V(1) is as defined by Equation 5, and the normalized Kalman-filter
innovation variable

E=m(z - 7). (15)

Differentiating Equations 13 and 14 and substituting from Equations 7 through
12 then show cventually that

X =Fi + Gu + [V + h®N + b2 ™™ ) uHTR ¢, (16)
M = (F - mVHTR'TH)M + m(LD)u+ m{L(T - TF")
+ 02D - MTHTR THM)TTu - mh2(N + @TMT)ulHTR 'THM, (17)
N = (F-mVH'R'H)N + NET - mHTR'HV) - m(VHTR THI'™™MT
+MrHTRTHV) u - mh(N + ™™ TYu]HTR THIN + (MI)'u]
+ mFQTT LT + @I LT weT - -(‘jll-(uTr"LrT'u)L (18)
and

L =h%D - MTHTR THM). (19)

L clearly remains positive-semidefinite and of order unity over time intervals
that are short compared to 1/h2. Also, £ can be trcated as a zcro-mcan Gaussian
white noisc process with covariance parameter R(t) in dctermining the
statistical bchavior of the above Kalman-filter vanables (Reference 4).

Controls with Wicner-process components will be used below; they are
not actually diffcrentiable and so should really be interpreted as smooth
approximations of the Wicner process used formally. Such approximations
would be unavoidable in practicc anyway and presumably could be made in a
way that amounts ' local averaging over a short cnough time interval that
the difference wr .id be negligible to the order of accuracy rctained in the
analysis.

APPROXIMATE ESTIMATOR BEHAVIOR IN A RESTRICTED CONTEXT

If h = 0, it is a standard result that the optimal control law is

u = -Wx, (20)

10
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where W = B'1(ZT + GTS) with S(1) the solution of

-S=SF+F'S+A-(SG+Z)BYZ" +GTS); S(tp) = Sy. (21)

Since we are only concerned with small h hcre, we consider corntrol laws of
the form

u=-Wx+n, (22)

under the further restriction that h*m®t'Y2 « 1, such that n is small compared

to unity in that context. With respect to sufficiently small h, it is clear that the
assumed properties of the matrices defining the problem, including the
stabilizability of (F, G) and the observability of (F, H), imply that W and W can

be considered of order unity and that x and x are also of order unity by this
standard (except perhaps for a set of realizations of negligible probability)
when the control law of Equation 20 is used and h = 0.

Differentiating Equation 22 and using Equation 16 shows that

U = (W + WF + WGW)x - WGn, - W[V + h2N + b2 T™T)
(m - W)JHTR g (23)

for such a control law if the perturbation control n is small and smooth
enough that 'n is negligible in the following (which it will be for the optimal
control law approximation derived below). We now assume this to be the case

and further that M and N are of respective orders m213/2 and m3¢>/? with the

autocovariance functions of the M-components being negligible for time
differences that are large compared to t. Then it follows from: Equation 19 that
order-unity changes in the L-components behave basically as sums of

1/(h2m 414) independent random increments, each with a variance of order

h*m®:®.  Hence the variance of such a sum is of order h’m*t*, which is small
compared to unity under the restrictions of interest here because

1 » i?m8!1/2 = (h2m414)(mt)3/2m. This means by the Chebychev inequality

that the difference between L and its prior expected value I__,(t) is small
compared to unity. In consequence, the substitution from Equations 22 and 23

for u and u in Equations 16 through 18 gives

% =(F-GW)x + VHTR ¢, (24)

M= (F - mVHTRTHM - mLr)WVHTR, (25)

and

11
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N =(F-mVH'R'H)N + NF' - m"R"'HV) +
m(VHTR 'THI™MT + MTHTR 'HV) Wx, (26)

except for higher-order terms, when M and N are of the assumed orders of

6.{11/2

magnitude and h’m « 1.

Since R and R'' arc both of order unity and since Equation 24 is the

cquation for x when h = 0, the components of the product VHT must be of order

unity beccause x is of order unity then.

Let q dcnote an arbitrary column of M and k its index. Then from
Equation 25,

q = (F - mVHTR 'H)q - mUWVHTR; q(0) = 0, (27)

where U is the matrix such that Uij = (I:I“)kji. Let C(t1) denote the prior
covariance matrix of q(t). It follows from Equation 27 and standard results that

C= (F - mVH'R'H)C + CFT - mH'R'HV) + m*UWVHTRTHVWTUT;
C(0) = 0
and that

t

C() = m2J-OT(t,s)[UWVHTR’IHVWTU](s)TT(t,s)ds.

From the properties assumed for the transition matrix T and the fact that VHT

is of order unity, C is of order mi13. By the Chebychev inequality, thercfore,

the components of any column of M and, hence, any component of M itself

would be of order m2t3/2 in this approximation, except perhaps for a set of

rcalizations of negligiblc probability.

Furthermore if C(ty,t;) is used to decnote the prior expectation of
q(1)qT(ty) for t, = t; , it is a standard result that

adlz,ll) T -1 - -
= [F - mVH R7HI(ty) Cty,ty); Clty,ty) = CQy).
2

and, hecnce, that t(tz,tl) = T(t,,1,)C(t;). Since T(1,,1;) decays cxponentially as

(t; - 1)/t by assumption, b(tz,ll) i5 indeed negligible for ty -ty » T .

12




NWC TP 7081

Now define X(1) = T(s,t)M(t) for t < s, so

X M(t) + T(s,0OM(1).

_ 9T,
ot

From standard results for transition matrix derivatives and the above

approximation for M,

X = mT(s.)(LT) WVHTRIE: X(s) = M(s)

cxcept for higher-order terms. Integration in reverse time from t = s gives
X() - M(t) as a zero-mean random variable with component variances of order

m*t> because of the order of magnitude assumed for T. Since M(1) itself is of

order mzt3/2, so is T(s,0)M(t) for t £ s by the Chebychev inequality.

With routine matrix manipulation, the solution to the approximate
equation for N can be expressed as

t

N(t) = m _fO{T(t,s)[QT(s)MT(s) + ME)Q()ITTLs)) W(s)x(s)ds,

where Q denotes THTR 'HV. Because of the preceding order-of-magnitude
results, this shows that N is of order m>t>/2.

Under the restrictions specified above, the Kalman filter equations

(expressed in terms of V, M, N, L, x, and 8) are therefore formally consistent
with the orders of magnitude and correlation-function behavior assumed for
M and N, and verify them under the assumption that the full equation system
is well posed in some approximate sense, and under the further assumption

that n would be negligible in the preceding derivations. As further
consequences, moreover, VHT is of order unity, T(s,t)M(t) is of order m?13/? for

s 2 t, and the difference between L(t) and its prior expected value L(t) is small
compared to unity under these conditions.

CONTROL OPTIMIZATION

For S(1) and u as specified by Equations 21 and 22, the problem herc
reduces to that of finding an optimal control law for the perturbation control n
to which we scek only an asymptotic approximation. An optimal expected cost-
to-go function can be defined consistently in terms of timec and the conditional
distribution of x and 6 (Rcference 8). The Principle of Optimality of dynamic
programming can then be applied in thc usual way (Reference 9) to derive a
Bellman cquation for this function, the solution of which equation specifies
the optimal control law for 7.

13
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Following this approach, we consider a possible cost-to-go function of the
form

2 "n
)= %iTsh g-n-]- tr{(S + Y)N] + h%xT (A M) + (1), (28)

where S(t) is as defined by Equation 21, and is hence symmetric and of order
unity, and where Y and A are functions of t only, with Y symmetric and of
order m2t3, and with A of order m1°. Retaining accuracy only to orders
h’m?%t>/? and h’m 215/27 (where y denotes any product of i components) and
using Equations 16 through 18 (with Equations 22 and 23 substituted for u and
u) to evaluate the required conditional expected increments (and products

thereof) in x, M and N result in a Bellman equation of the form

_ol _ min p(t, x, M, N, i) )
Jt n
, (29)
_ 1T 2
I, ) = > {x"Spx + tr[S(V¢ + h*N)]1/m}

where p is a certain rather lengthy expression, if Pm®t? « 1 « m%%2. This
derivation also uses the fact that L can be replaced by its prior expected value

L in Equations 17 and 18 in this context. The minimizing n in Equation 29
occurs when the m-derivative of the expression p is zero, which is easily shown
to be when

n = W2B L ((THTRMHVY - (AG) M), (30)

Substituting from Equation 30 for m in Equation 29 and collecting terms in like

powers of the a priori random variables x, M, and N then show that J of

Equation 28 formally satisfies the Becllman equation to order h?m 2%, for
h2m®t1172 « 1 « m®¢37? and S(t) the solution of Equation 21, if
~Y = Y(F - mVH'R'H) + (FT - mH'RTHV)Y +
(SG + 2)B1ZT + GTS); Y(1) = 0 (31)
~n=A[F-GB1ZT + GTS)] + (FT - mH'RTHV)A +
YVHTRMHrB (2" + GTs); A(tp) =0 (32)

t
f(t) = J g(s)ds,
{
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if the resulting values of Y and A have the assumed orders of magnitude and if
the corresponding perturbation control of Equation 30 is such that the

contributions of m would be insignificant in the computation of N and M.

Now by standard propertics of transition matrices,

Y
Y() = .[ T (e, 0ISG + 2)B (2T + GTS)}(a) T(a, 1) da.

Since T(a, t) decays to zero by assumption over an a-interval of order t and has
maximum component magnitudes of order mt, this integration is effectively

over an interval of order t and Y is therefore of order m213‘ as assumed. Also,
for the transition matrix T, defined by

AT, (o 0)

~——— =[F-(5G+ 2)B7IGTI0) Tyla, 0; Tyt 0 =1,
02

it is straightforward to verify that

%
A = J: T (o, H[YVHTRHI B 1ZT + GTS))(@) T,(a. 1) dar.

Since T,(a, t) is order unity and this integration is also effectively over an

interval of order t. A is of order mt>, as assumed, by the unity order of

magnitude postulated for matrix products of which TTYVHT is an example.
Finally, the time derivative 'q of the derived optimal perturbation control will,
as a result, be dominated by terms of orders h’m313M, r’m4oM, h’m21t°M, and
h’m3tM. Such terms, as was assumed, would make no significant contribution

as a part of u in the differential Equations 17 and 18 for M and N if h?m®%112 « 1.

To summarize, it has been shown at least formally that the optimal control
law i3

u=-B1ZT+GTS)x + 1

to order h?m 2732 if hzm6t“/2 « 1 « m615/2. where S(1) is given by Equation 21,
n is given by Equation 30 with V(t), Y(t), and A(t) as given by Equations 5, 31,

and 32, and where x and M are generated from the incoming measurements z
by the Kalman filter of Equations 7 through 12 and

M = (F-mVH'RTHM - m2Lr)B 12T + GTS)VHTR (2 - 2);
M(0) = 0. (33)
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The last cquation is a sufficiently accurate truncation of Equation 17 with

substitution from Equations 22 and 23 for u and u.

APPLICATIONS IN A MORE GENERAL CONTEXT

The preceding results also have applications to a wider class of optimal
control problems, with multivariate dynamics of the general form

‘ x = f(x. 0, u, t, v) (motion-state)

0=0 (parametcrs)
l x(1y). ® Normal and indcpendent a priori with & (8) = 0,

state measurements of the form

z=g(x,0,u, V)
w, v independent white noise processes,

and performance criterion (to be minimized) of the form

&
J= & [y(xg 6) +J A(x, 6, u, t)dt],
t

where ty and t; are specified a priori. Corresponding to such a problem, there
is the nominal control problem (easier to solve because it is deterministic) of

finding u(t) to minimize
- - lf - -
J= w(xq, tp) +J Alx (1), 0, u(t), t]dt
t
for

x = f(x, 0, u, t, 0); x(tg) = prior mean of x(tg).

Also. a nominal mcasurement history z(t) can be defined as
2(1) = glx(1), 0, uv), t, 0]

when the minimizing u(t) is used.

16
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Once x(1), u(t), and z(1) have bcen found for the solution of the nominal
control problem, the original problem can be solved by adding to u(t) the

perturbation control law for u-u (or 8u), which minimizes J-J (or 8J). Taylor-
scrics cxpansions of f, g, y, and A can typically be used to express the
dynamics, measurcments, and criterion of this optimal perturbation control
problem in terms of the perturbation variables &x, 8u, 6z, 6, w, and v (and, of

course, the predetermined time functions X, u, and 2). Treating the

perturbation variables as small and truncating the Taylor-series expansions at
the lowest nontrivial order of accuracy lead to a problem of the familiar
lincar-quadratic-Gaussian form for the optimal perturbation control law.  The

solution to this problem is well known and can be added to u as a first
approximation of the optimal control law for the original problem.

If the Taylor-serics approximations are carried out to one higher order oi
asymptotic accuracy in this perturbation control problem, the effect 1is
typically to introduce quadratic terms in the dynamics and measurements, and
cubic terms in the criterion. Such a problem can often be rescaled so that the
perturbation variables are of order unity and the coefficients of the added
higher-degree terms become the quantities that are relatively small, say of
order h. For cases formulated so that thc parameter vector 8 does not enter the
measurement equation in the linear-quadratic-Gaussian approximation,
possibly by adjoining the observable subspace of the original "parametirs” to
x, and with dim(x) > dim(z), this higher-order problem typically can be
transformed further to one with dynamics, measurements, and criterion of the
form

y =Fy + Gu + t(AyyT) + 2@ yuT) + GWN(Q), (34)

z=Hy + t(®yyT) + 2H t{QyuT) + GWN(R), (35)

and

. I -
IJ=£& {% y? Sys + % y}‘ lr(I'Ifyfy}") +I [cTy + yTZu
Iy

+ -;—(ny_\y + u'Bu) + yT tr(Puu’) + uTtr(Yny)

1T v, 1l T, = T
+ =y t(Zyy )+ —u  t(Zuu )ldt},

3 3 (36)
where ¢ and the three-way matrices are of order h and B! and all other
quantities arc of order unity, where u, z, and J are now used in place of du, &z,
and 8J, wherc "GWN" denotes Gaussian whitc noise with the indicated

17
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8x

6:}' and where

covariance parameter, where y denotes the composite vector [

f"G f{Q éi and A have the forms

(st [ghi-mna- g3

éz ¢ 0 ‘i:[Z} and /—\=[AO]
00 0 00

for this partitioning of y. If R'! is also of order unity, the optimal control law
for this problem can be approximated up to terms which are asymptotically of

order h? (scc appendix for dectails), and this approximations retains this

accuracy as }_2—>O if @ = 0 (Reference 10). Furthermore, the Taylor-series

truncations in the problem formulation don't justify order-h? accuracy in the
solution anyway.

For nonzero Q, however, the analysis of the preceding sections shows

that if f{ = R/m?, and R, F, and H have the properties assumed there with
h?m®t'Y2 « 1, then the optimal control law can also have another component
(Equation 30) of order h’m?7>/%2.  This Iatter component can be large compared

to h? under these conditions and is therefore significant at the level of
accuracy of the problem formulation. In this case, this extra control
component can simply be added to the (order-h) control law approximation of
the appendix to approximate the optimal control law to order h2m2¢%/2,
Absorbing h and m into the definitions of ' and R in earlier sections allows

this added control component to be expressed as
n =B lr{[THTR'HPY - (AG) | M}, (37)

where T is the p x m x n three-way matrix such that

n = dim(x)
Tijk = Qjkisn m = dim(u)
p = dim(@) ,

where l3(l). Y(1), and A are the solutions of

P=FP +PFT+Q-PH'R'HP; P(1y) = var(xp) (38)
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~Y = Y(F - PHTR 'H) + (FT+HTR THP)Y + (SG + Z)B" (2" + GTS);
Y(t) =0 (39)

_A=A[F-GBYZT +GTS)] + (FT+HTR 'HP) A +
YPH'R'HI B 12T + GTS); A(tp) = 0, (40)

with S(1) as dcfined by Equation 21, and where M is generated by

M =F - PHTR 'HI)M - DB 12T + GTS)PHTR (2 - HX):
M(1) = 0 (41)

with L denoting the conditional covariance of 0 (as computed in any of the
precceding approximations of the optimal perturbation control law).

This added control component has the basic form of an irregular dither

term that is produced as a linear combination of the outputs (M) of a high-
frequency linear system (Equation 41) whose input is the Kalman-filter

innovation variable (z - Hx). In specific cases, moreover, this dither can
beccome an even more significant component of the optimal law
approximation, the result of particular order-of-magnitude properties beyond
what was assumed in establishing the more general results above. A common
example is that of regulating the position of a scalar undamped second-order
system when only the position is measured and only the velocity is affected by
the plant noise. This means that

(g} o-[g) a3 o a-[1]

in the notation above. In that case, it can be shown that t = 1/¥m and that
optimal control law approximation of the preceding paragraph is actually

accurate cxcept for terms of order h? as long as mht « 1. The dither term is
still of order h®m2t°/% in this case so it will even be large compared to h under

these conditions if m 2 » h » m™>% Thus, the initial parameter uncertainty
can be large enough in such a case without being too large to destroy the
formal validity of the result that the dither control is the next level of
asymptotic approximation to the optimal control law after the "linear-
quadratic-Gaussian” approximation.

Figure 1 shows the numerical significance of adding such a dither
control to an adaptive missile autopilot (attitude control law), which is an
cxample of this particular type of control problem with two parameters
altogcther. These paramcters approximate the effects of missile speed and
altitude. The details of this example are described in Recference 11 with the
unfortunate exception of an error in computing the dither control according
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to Equations 37 through 41 and the approximation of & [exp(8;)] by exp(& (6;)]

instcad of cxp[& (6, + ;—var(ei)]. Briefly, it is a case of planar motion, and the

objective is to make a missile’s acceleration lateral to its flight path match an
arbitrary "commanded” value (which typically varies with time).  This lateral
acceleration is produced primarily by the body lift that results from oricnting
the missile at an angle to its flight path, and this orientation is controlled in
turn by tail fin deflections. The controller measures actual and commanded
lateral acceleration, and selects the current tail fin deflection. The
optimization criterion used for the control law is one for which the optimal
control makes the accelcration track the commanded value as a critically
damped sccond-order system under idealized conditions (missile dynamics obey

a simplified model, and parameter values arc known precisely). Figure |1
shows the result of using the indicated control laws in a more realistic
computer simulation of the missile and aerodynamics. The commanded

acccleration in each case here is the indicated series of 1-sec steps. This is
followed closely under the nominal flight condition (Mach 2 at 20,000 ft), both
with and without the dither control. At Mach 1.5 and 60,000 fi., however,
adding the dither control caused the autopilot to adept more quickly to this
nonnominal flight condition (i.e., to nonzero values of the parameters). The
paramcter changes corresponding to this difference in flight condition are
actually far beyond what has been justified theoretically for using this dither
to approximatec an optimal control law more accurately. Instead, they
correspond to prior parameter variances that, to test the robustness of this
approximation, were made as large as would allow the autopilot response to
remain empirically rcasonable at the nominal flight conditions.
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Appendix
CONTROL LAW DETAILS
The order-h approximation of the optimal control law for Equations 34
through 36 was developed for the most part in Reference 10. Including the

recmairing terms in that development shows that this approximaiivn in the
notation of Equations 34 through 36 is

u=-BYZT+G"S)y + B! r{[2(SG+Z)B'¥ -1 -@58

58T - (5G+ 2B =B 1 ZT+GTs)+ (IG) Iy y T}
B'{c+Gl¢ + tr[YP + (S + Y)(PO + 8TP) + PHTR ! HPY),

where y and P arc generated from the incoming measuremcnts z by

y = (F + e'u)9 +(G+8'y)u + trfA(yy " + P)]

£ [x(zo)l}

+ P(H+2HQ u + 20 y)"R 1z - 2); y(tg) = [ 0

and

P=(F+2A'y +28u)P + P(F + 24"y +20w)T +Q
-P(B+2HQ u+20 y)TRI(H + 2HQ u + 20 y)P

varlx(tg)] 0 }

- T "5 -1 28, —
+2[AH" + (POP) JR"'(z - 2); P(‘o)-{ 0 var(e)

and where

2=Hy + tf{®d(yy " + P)]

and A(1), S(1), Y(1), IT(), and ¢(1) are the solutions of the differential equation
system

V=FV+ VFT +Q- VHTR 'HV; V(1) = P(»)

23




NWC TP 7081
A=T+T 4T :T=(F- VHTR THA + VAV - (VOV)R 1 HV; A(1y) = 0
S=SF+F'S+A -(SG+2B 'ZT+G'S); Stp =S
~Y=Y(F-VHTR 'H) + E - HTR'HV)Y + (SG+ 2B 1(ZT + GTS); Y(1) =0
M=5%-[(SG+2)B'zB 12T +G's)| B 12T + G'S)
C+T +T:T=T[F-GB YZT+G'S)] + A4S
$6'B1ZT+G's) - (5G+2)BleTs -1 AT

+(SG+2)B N (¥ + li'")B‘l(iT+ G'S); Tty = Mg

—6=[FT - (SG+2Z)B!G"¢ - (SC+ DB {c + u[YV
+S + Y)ve +8TV) - ViQHTR 'H4 H'R T HQT)VY])
+S tr(VA) + tr[VE + VHTR THVIT + (S + Y)(VA + A" V)
_V(HR e +oR THVY] o) = tr{1Vp).
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